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Abstract. It is shown that the construction of the class operator for SU (2) is a partial case of a 
much more general problem, that of decomposing an operator into components transforming 
under conjugation according to a given irreducible representation. lXe  problem is solved 
generally for arbiary compact groups and some possibilities for extensions of this pmedure 
to the case of non-compact groups are indicated. 

1. Introduction 

The notion of the class operator, denoting the sum (within the group algebra) of all elements 
belonging to a particular conjugacy class of group elements, seems to be useful and well 
established in the realm of the theory of finite groups, cf e.g. Katriel [I] .  However, it is 
only fairly recently that the paper of Fan and Ren [2] has raised some attention to this 
notion in the Lie case. The authors have posed the problem of evaluating the integral 

where J,, Jy and Jz are infinitesimal generators of a representation of the rotation group 
SO(3) (or S U ( 2 ) ) ,  which, as is not hard to observe, is just the integral over the conjugacy 
class (within the rotatiou group S O ( 3 ) )  consisting of all rotations through a fixed angle 
@. The authors calculated the explicit value of the integral in (1) by using some rather 
sophisticated techniques with a strong quantum field-theoretical flavour. Their result was 
re-obtained by Backhouse [3], who used simpler techniques of the (conventional) theory 
of representation of Lie groups, and by Rembieliriski [4] who gave an expression for the 
class operator constructed out of a fixed irreducible representation of SU(2) .  Moreover, 
Backhouse outlined a natural extension of the construction to other compact Lie groups. 

It is our intention here to show that the construction of the class operator, whether 
for SU(2)  or any other compact Lie group, is just a particular case of a more general 
construction. Namely, with each function defined on a chosen conjugacy class of a given 
group G (note that for a Lie group it is in a natural way a smooth manifold) we associate 
an operator obtained by integrating the given function against conjugation operators of 
the representation (see (3) and (12) below)-the class operator obtained by choosing the 
function to be identically 1. To determine an explicit form of such operators one has to 
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solve the following problem. For a given operator T on the representation space V of G 
find a decomposition of it into components which transform under the conjugation according 
to the irreducible representations of G. The class operator is then the component of the 
decomposition of T ( g ) ,  g E G transforming according to the trivial representation. 

This is a natural problem to consider, with roots which can be traced back at least to 
the work of Wigner on tensor operators. Moreover, the version of the problem we propose 
lends itself to a nice 'probabilistic' interpretation. Assume that a symmetry operation is 
performed on a physical system in a random way, with a probability distribution f, For 
example, imagine a rotation through a fixed angle t) being performed, however, with an 
axis of rotation randomly chosen with'a probability given by a function f ( 8 ,  rp) depending 
on the orientation of the axis described by its polar coordinates 8, rp. Then the average 
effect of this operation on the system will be expressed by the integral 

L/&/" f (8, rp) exp[it)(J, sin 8 cosrp + Jy  sin 8 sin rp + JL cos 8 ) ]  sin8dOdrp 
4n 0 0 

and on an observable A by an integral of the type (3) with T(g0)  replaced by A. It is 
perhaps worth pointing out that the resulting average does not belong to the symmetry (e.g. 
rotation) group any more. (For yet another application of integrals of that kind, see chapter 
3 of [7].) 

Concerning the general formulation of the problem described above, in  this paper we 
derive an integral representing such components in proposition I ,  which is a generalization 
of the integral (l) ,  and as a corollary ,we obtain a simple expression for the class operator 
in the case of an arbitrary compact G. Our method is based on the standard (Peter-Weyl) 
theory of representation of compact groups. For the case of SU(2)  we solve completely the 
problem of determining irreducible components of T ( g )  by giving a finite Fourier series 
expressing them in terms of (modified) Clebsch-Gordan coefficients. As a special case we 
get the formulas obtained in the above papers. 
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The integrals we consider here can, in general terms, be written as 

where f(x)  is any continuous (or smooth) function on the group G. and Ad denotes the 
adjoint representation of G on its Lie algebra. However, for the case of non-compact groups 
like SU(1, I), such integrals will not, in general, converge unless the function is compactly 
supported. In the latter case the map'f H T(f; H) is an operator distribution satisfying 
a simple covariance condition (cf (5) below). These distributions also seem to be a proper 
starting point for generalizing the construction to the non-compact groups. With this future 
aim in mind we include here a few remarks concerning such integrals and refer the interested 
reader to a forthcoming work [6] by the authors on the case of SU(1, 1) for more details. 

2. Generalities 

If G is a topological group, then by a representation of G on a topological vector space 
V we shall mean a homomorphism T: G + G L ( V )  into the group G L ( V )  of continuous 
invertible linear maps on V .  which is continuous with respect to the strong operator topology. 
We shall use a notation ( T ,  V )  to denote a representation of any given group on the space 
V. In the following we shall assume G is a compact group, V a Hilbert space, and denoting 
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by V ( V )  c G L ( V )  the group of unitary automorphisms of V we assume T :  G + V ( V ) ,  
i.e. (T .  V )  is a unitary representation (not necessarily irreducible) of G on a Hilbert space 
V. 

If L ( V )  denotes the space of continuous linear operators on V with the usual Banach 
norm, then the conjugation L ( V )  3 A + T ( g ) A T ( g - I )  E L ( V )  defines a continuous 
representation of G on L(V) .  Iff is a continuous function on G then for an arbitrary fixed 
go E G we set 

T ( f  ;go) = f ( x ) T ( x ) T ( g o ) T W ' ) h  (3) 

where the integration is performed with respect to the (bi-invariant, normalized) Haar 
measure dr on G. Thus, denoting by C(G) the space of continuous functions on G, we 
have the mapping 

C(G) 3 f 4 T U ;  go) E L ( V )  (4) 

defined for any compact G and an arbitrary go f G .  
It is a well known fact cf e.g. [7], that the integral (3) converges absolutely. By 1, resp 

p, we shall denote the left, resp right, regular representation of G in C(G),  which is defined 
as the mapping f + W f ,  resp f + p(g)f, where 

h ( g ) f ( x )  = f(g-'x) r e v  pk) f (x )  = f ( x g )  x E G . 

T ( g ) T ( f ;  go)T(g)-' = T ( A ( g ) f ;  go). 

A straightforward computation gives the following relation: 

(5 )  

Assume now that V is a finite-dimensional Hilbert space. The space L ( V )  of linear 
operators on V is given an inner product by (AIB)  = Tr(AB*), which is invariant under 
the representation of G on L ( V )  by conjugation, A + T ( g ) A T ( g ) - ' .  We shall denote this 
representation by (S ,  L(V)) ,  i.e. for any g E G and A E L ( V )  we set 

S(g1.4 = T ( g ) A T ( g ) - ' .  

Then, using general results about representations of compact groups (cf e.g. [8] or [9], 
sections 6.2 and 6.3 for a statement of the relevant results), one sees that L ( V )  can be 
decomposed into ineducible representations in the following way. 

Let X ( V )  be the set of (classes of) irreducible representations of G which occur in 
the decomposition of (S ,  L(V))  into irreducibles and for any U E Z(V) let (Tg,  H,) be a 
fixed representative of this class. Then for each U E X(V) there exists a unique subspace 
W, c L ( V ) ,  invariant under conjugation and such that in an appropriate basis in WO the 
restriction of S(g) to W, is represented by block-diagonal matrices 

Tv(g)  0 ... 
T* (g) ( ... Ti;))  

(6) .................... 

where the number n(o)  of blocks along the diagonal is uniquely determined and is called 
the multiplicity of the class U in the representation (S ,  L(V)).  Then one can write 

L ( V ) =  @ w, = @ n ( o ) H , .  (7) 
O E V V )  .EL(V) 

Moreover, standard results about matrix coefficients imply the following (cf [9]). 
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Proposition 1. Let go E G. go # e, but otherwise arbitrary. Denote by M ,  the subspace 
of C(G) spanned by the functions ~ ~ ( g ) ~ ~ ,  i.e. complex conjugates of matrix elements of the 
representation (To, H o )  and by Fv c C(G) the subspace spanned by the conjugate matrix 
coefficients of representations in X(V). 

A Ortowski and A Stras4urger 
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(a) The map 

C(G) 3 f + T U ;  80; E L(V) 

maps each space M, into the corresponding W, and vanishes on the orthogonal complement 
to .'Fv in C(G). 

(b) For any U E C(V) we set d,, = dim& and let x v ( g )  = Tr(T,(g)) denote the 
character corresponding to the class U ,  Then TR,,; go) E W, and 

In other words, if Po: L(V) + Wi is the orthogonal projection onto the subspace 
W, c L(V) corresponding to the decomposition (7), then 

doT(jZ,; 80) = Po(T(gO)). (8) 

That this latter relation may be considered as a generalization of the results on the 
class operator referred to above will be seen from the following discussion. Recall that the 
character of the trivial representation is the function 1 equal identically to 1 on G, hence 
the integral (3) corresponds to the class operator for G. By virtue of (b) above it is an 
intertwining operator for the representation T, i.e. it satisfies 

T(g)T(1;  go)T(g)-' = T(1: go) for each g E G .  

Corollary. Assume (T. V) is an irreducible representation of G on a finite dimensional 
space V, then 

I denoting the identity operator on the representation space of T ,  and xr(g)  = Tr(T(g)) 
being the character of T .  

In fact, T is proportional to the identity by virtue of the Schur lemma and the coefficient 
of proportionality can be obtained by evaluating the trace under the integral sign in (3). The 
fact that the right-hand side is the orthogonal projection of T(g0)  onto the space of scalar 
operators can also be verified directly by observing that the orthogonal complement of the 
latter space is the space of operators with vanishing trace. Specialized to the case of S U ( 2 )  
this equality is precisely the one established in the papers referred to above. 

Examining the integral in (3) a bit'closer one sees that it has  an additional invariance 
property, namely if Z(g0) c G d e n o d  the centralizer of 80 in G. i.e. Z(g0) = ( h  E G I 
hgo = goh), then also 

(9) 

This means that one can replace the given function f by its shift along the co-sets of 
Z(g0) without affecting the value of the integral (3). This allows us to use the well known 

T ( p ( h ) f ;  80) = T U ;  go) for each h 6 z(80). 
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technique of transferring integrals from the group to the homogeneous space G/Z(go), thus 
passing from the map (4) to the map of the space of functions on the co-set space G/Z(go). 
We recall it briefly here. 

Note that the space C/Z(go) can be naturally identified with the conjugacy class 
C(g;) = (ggog-’ I g E G ]  in G by means of the correspondence G/Z(go) 3 xZ(g0) ct 
xgox-’ E G/Z(go). In this way the action of G on the conjugacy class by conjugation 
corresponds to the usual left action on G/Z(go). 

In particular, given any function j E C(G) one can define a continuous function T o n  
the quotient space G/Z(go) by averaging over co-sets, that is by setting 

The map C(G)  3 f -+ 

to a unique map r”:C(G/Z(go)) + L ( V )  by setting 
C(C/Z(go)) is surjective and therefore the map (4) gives rise 

go):= go) rp E C(GIZ@o)) 

where f E C(G) is any function such that T= 60. 
This procedure can be given a slightly different description as follows. For any x E G 

let the corresponding co-set xZ(g0) E C/Z(go) be denoted by f and let d&(f) be the 
(unique) invariant measure on G/Z(go) defined by the relation 

Now observing that T(xg0x-I)  depends only on the co-set f = xZ(g0) of x we can write 
T(xg0x-’)  = T(f) and regard the map x -+ T(xgox-I)  as the function f + T(f)  on 
G / Z ( g o ) .  We see that 

In view of (5) we then have 

T(g)T(rp; go)T(g)-’ = T(Wrp; go) rp E C(G/Z(go)) 

showing that the map C(G/Z(go)) 3 rp -+ T(rp; go) is covariant with respect to the action 
of G. 

3. The case of SU(2) 

The general scheme given above will be applied in this section to the case of the group 
S U ( 2 ) .  In particular we shall show how to obtain the explicit expression for the class 
operator for SU(2),  derived in the papers mentioned. Recall that 
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We identify the Lie algebra su (2) of Sv(2 )  with the space of anti-hermitean traceless 2 x 2 
matrices so that (iua]i=! is a basis of su (2) over the reals. Here of course U, are the Pauli 
matrices. In particular the map 
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R3 3 (11, t z ,  13) H expift lul  + wz + hu3) E SU(2) 

is surjective and the set A, = (2ni(Zu1 + ZUZ + ZO,)), where Z stands for the set of 
integers, is mapped on the unit matrix-I E SU(2). 

Each unitary matrix is conjugate to a diagonal one, which is determined up to a 
permutation of its diagonal elements, hence the conjugacy classes for SU(2)  (except 
the trivial ones) are in a 1 cf 2 correspondence with elements of the maximal toms 
U(l) in SU(2), which we choose @ ' b e  U(l) = {expi(@/2)q I @ E RI. Now set 
g(@) = expi($/2)q) and recall gg(@)g-l = expi($/2)Ad(g)ud, where the adjoint 
representation g + Ad&) taken with respect to the basis iua)i=, is the standard covering 
S U ( 2 )  -+ SO(3).  

Thus we see that points of the conjugacy class C(g(q) )  of the element g(@) are in a one- 
to-one correspondence with the points of the sphere S+ = {i($/2)n. U I n E R3; In[ = 11 
in su (2) N R3 with radius 1@/21. 

We denote 

(sinecosrp, sinesinrp,cbse) = n(e,@) 

so that [O, n] x [O, 27r[3 (S. @) H exp(i(@/2)n(O, @) .U) is a parameterization of C(g(@)) 
and the invariant integral on C(g(@)) defined by (11) is given as 

i 

For the case of the character ,ys of the irreducible representation (Ts, V,) of SU(2) of 
dimension 2s + 1 we have, recalling that the characters are central functions, the following 
expression: 

where we have used the fact that 

On the other hand, the identification L ( 4 )  N V,@V, allows us to apply the Clebsch-Gordan 
decomposition 

zi 

SSO 
c; @ vj = 

to find projections of a given operator Onto subspaces Vj and thus obtain the integrals (13). 
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However, recall that an identification of v) @ Vj with L ( v ) )  is given by the map 

U @  w + T m w  E Uv)) 

where 

T"@,(X) = ( w l x ) ~  x E Vj 

so, as a consequence of the requirement of linearity for this identification we must let 
G = S U ( 2 )  act on Vj @ Vj by means of r, @T,  rather then by T j  @ q, ?;; being the 
representation conjugate to r,. This will result in the fact that our CG coefficients are 
numerically different from the standard ones found in the most sources (e.g. [9-11]). 

Thus if { e ~ ] { = - ,  is a basis in Vj with respect to which Tj (g ($ ) )  are diagonal, i.e. 

ik$ Tj(g($))ek = e ek 

and (AS, I 0 < s < 2 j ,  -s < m < s] is an orthonormal basis of Vj @ Vj compatible with 
the decomposition (14). i.e. such that the vectors [AS,];=-, form a basis for the irreducible 
subspace V,, then we introduce the CG coefficients by means of the decomposition 

and as usual we normalize the bases so that c ( j ,  j ,  s; k ,  1 ,  m) are all real. 
Since c ( j ,  j ,  s; k ,  1, m) = 0, unless m = k - I ,  the above simplifies to 

By diagonality of T,(g($))  we have 

with dx($) = sk* and hence the component of Tj (g ($ ) )  in V, is given by the expression 

Thus the projections F'$T,(g($)) are, for all values of $ E [0, 2x1, proportional to the 
single operator A& the only dependence on $ being through the factor of proportionality 

J 

a'($) = c ( j ,  j ,  s: k ,  k ,  0)ddP). 
k = - j  

Note that for each s the operators A;, E L(v) )  satisfy the relation 

T j ( g ( $ ) ) A A q ( g ( $ ) ) - '  = A6 
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from which it follows that AA are diagonal with respect to the basis (ek)i=-j and in particular 
A: is, possibly up to a constant, an identity operator. 

Now one can express AS, in terms of the canonical basis (ex 8 e,)  again. In fact, by 
virtue of unitarity of the matrix of (modified) Clebsch-Cordan coefficients (which holds 
since they are defined as coefficients of'the transition matrix between the orthonormal bases 
(ek 8 e,) and (A; I 0 < s < Zj, -s-< m < s)) and using also the fact they are real we 
have 
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and therefore we get 

i 
pxq(g($)I = ~'(+CI) C c(j,  j ,  s: P. P. o)ep 8 ep 

p=- j  

Finally, for the integral in (13) we have 

The problem of computing explicit vales of the modified CG coefficients which enter (17) 
is of a quite different nature and will not be treated here. We just confine ourselves to the 
simplest special case, namely the case s = 0, and check that it gives the original value of 
the class operator. 

To this end we observe that (16) implies the coefficients c( j ,  j,O; p ,  p,O) are 
independent of p and by orthogonality 

Thus, setting s = 0 in (17) we get 

in agreement with the quoted results. 

4. Conclusions 

We have shown that the construction of the class operator for the S U ( 2 )  group as well 
as for other compact groups can be considerably generalized by employing constructions 
of the general group representation theory. Considering the problem of decomposition 
of the representation operator into components transforming according to irreducible 
representations we have obtained not only an analog of the class operator in the case 
of arbitrary compact groups, but also another interesting class of operators with a natural 
interpretation. Our formulation seems to be a good starting point for further generalization 
to the case of non-compact groups. 
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Nore added. After the submission of the paper. P Kasperkovitz has kindly pointed out to us the papen 1121 and 
[131. where the problem of decomposing the conjugation representation (termed there the remor represmrufion) is 
studied in detail. In pahular ,  some of the arguments of our section 3 can already be found there, e.g. the definition 
and several properties of modified OG coefficients, termed there the coupling co&cients, are given in [IZ]. The 
overall methods and aims of those two papers as compxed o m  are, however, apparently rather distinct. 
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